(+)-Saxitoxin : A First and Second Generation Stereoselective Synthesis

Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 9964.

Literature Presentation Zhenjie Lu Sep 28, 2007

Introduction

 $H_{2}N + O H_{1}NH O H_{1}NH O H_{1}NH O H_{1}NH O H_{2}$

> Isolation and structure characterization:

First isolated by Schantz in 1957 from Alaskan butter clams *Saxidomus giganteus*. (A shellfish poison associated with red tide)

Structure characterized in 1975 by Schantz/Clardy and Rapoport groups.

➢ Bioactivity:

One of the most lethal non-protein poison.

It is a potent and extremely selective sodium channel blocker and is widespread used in the study of various nerve disorders.

It has been indispensible tool in medical research.

^{1.} Schantz, E. J.; Mold, J. D.; Stanger, D. W.; Shavel, J.; Riel, F. J.; Bowden, J. P.; Lynch, J. M.; Wyler, R. S.; Riegel, B.; Sommer, H. *J. Am. Chem. Soc.* **1957**, *79*, 5230.

Schantz, E. J.; Ghazarossian, V. E.; Schnoes, H. K.; Strong, F. M.; Springer, J. P.; Pezzanite, J. O.; Clardy, J. J. Am. Chem. Soc. 1975, 97, 1238.

^{3.} Bordner, J.; Thiessen, W.E.; Bates, H. A.; Rapoport, H. J. Am. Chem. Soc. 1975, 97, 6008.

Synthetic Challenges

- It is highly functionalized and very susceptible to oxidation.
- > Remarkably dense configuration of heteroatoms about the tricyclic core. $C_{10}H_{19}N_7O_4$
- > The dicationic nature causes difficulties on handling and purification.
- Synthetic approaches:

first total synthesis of (±)-saxitoxin : Kishi, Y.; etc. JACS, 1977, 2818.

(-)-decarbamoylsaxitoxin : Kishi, Y.; etc. JACS, 1992, 7001.

formal synthesis of (±)-saxitoxin : Jacobi, P, A.; etc. JACS, 1984, 5594.

• The first total synthesis

Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem. Soc. 1977,99, 2818.

• Enantioselective synthesis of (-)-Decarbamoylsaxitoxin

Hong, C. Y.; Kishi, Y. J. Am. Chem. Soc. 1992,114, 7001.

- -- In above plan, all three rings of the STX core can bee formed from a nine-membered ring, thus avoid late-stage functional group exchange.
- -- Both Kishi and Jacobi assembled the tricyclic core first.

C-H Oxidation Amination

Espino, C. G.; When, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001,123, 6935.

Fleming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2003,125, 2028.

 $Rh_2(eps)_2$ was found to be significantly more active and robust...

Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 124, 15378.

Rh₂(esp)₂

Organozinc addition to N,O-acetal 10 affords alkyne-derived oxathiazinane products.:

Plan A: Formation of the Nine-Membered Ring Guanidine via RCM

Failure of RCM may be due to the polar nature of two guanidine units and/or aggregation effects by hydrogen bond donor/acceptor groups; low yielding step (8% yield)

Plan B: Formation of Guanidine via Carbodiimide Addition

Another plan: Cyclic guanidine formation via carbodiimide addition

Preparation of Intermediate 25:

- (a) Pd/CaCO₃/Pb, quinoline, THF, H₂;
- (b) NaN₃, nBu₄NI, DMF, 80% (two steps);
- (c) PMBCI, K₂CO₃, nBu₄NI, 80%;
- (d) Me_3P , H_2O/THF ;
- (e) MbsN=C(CI)SMe **24**, iPr₂NEt, CH₃CN, 70% (two steps).

(a) Tf_2O , C_5H_5N , DMAP, CH_2Cl_2 , 0 °C; (b) NaN_3 , DMF, -15 °C, (70%, two steps);

(c) (NH₄)₂Ce(NO₃)₆, tBuOH, CH₂Cl₂, 74%;

(d) SnCl₂, THF, MeOH; (e) AgNO₃, iPr₂NEt, CH₃CN, 40% (two steps).

34 was too unstable (presumably due to strain-promoted ring opening of the fused oxathiazinane);

Strain in trans-substituted 33 may also be responsible for low yield of cyclization.

Lesson: Cyclic starting material is problematic.

Plan B: Formation of Guanidine via Carbodiimide Addition

34 is unstable to chromatography and storage; low yield (40% in 2 steps).

DFT calculations suggests that desired **41** is thermodynamically (strongly) preferred.

However, absence of oxathiazinane ring in 39 results in low selectivity in ring-closing reaction:

Attempted formation of tricyclic core gave undesired isomeric structure:

Lesson: Acid-labile hydroxy protecting group resulted in undesired N,O-acetal.

NMbs NMbs NMbs NMbs Họ _{HO} " NH NH₂ H_2N H_2N^2 H₂N² 'NH `NH O 1. Cl₃CC(O)NCO [0] HO `OH NH2 C OR OR NH NH HO NH. 2. K₂CO₃, MeOH NMbs NMbs NMbs 82% H **NMbs** Ĥ ŃH 39 57 58: R = C(O)NH₂ 59 NMbs NH_2 HN 60^b % yield^c catalyst^a 59 entry oxidant base 58 HO. OR RuCl₃ Oxone NaHCO₂ 2.3 35 1 1 1 HO NH 40^d Oxone NaHCO₃ 2.3 2 RuCla 1 1 NMbs ^tBuOOH OsO₄ 1 10 70 3 none N H _ OsCl₃ Oxone NaHCO₃ 1 4 5 2.3 35 60 OsCl₂ Oxone Na₂CO₃ 12 62 5 1 1 RuCl₃ Oxone Na₂CO₃ 5 1.5 33 6 1

Plan D: Alkene Ketohydroxylation from Acylic Precursor

^{*a*} Reactions performed with 2–10 mol % catalyst at 25 °C. ^{*b*} Product ratio determined by HPLC analysis. ^{*c*} %Yield is combined for **58** and **59**. ^{*d*} Reaction performed at 10 °C.

19 steps sequence in 1.3% overall yield

Step-count Analysis of the First Generation

Alkynyl oxathiazinane 21 proved exceptionally versatile, allow various strategy;

Discovery of new class of heterocyclic iminium ion surrogates;

However, preparation of 39 require 15 steps—too long for two stereogenic centers;

The Second Generation Synthesis of (+)-Saxitoxin (in 14 Steps)

(a) tBuPh₂SiCl, imidazole, DMF, 95%; (b) iBu₂AlH, CH₂Cl₂, 71%; (c) PMBNHOH, MgSO₄, CH₂Cl₂, 76%; (d) MbsN=C(SMe)NHCH₂CH₂C=CH **63**, iPrMgCl, THF, -78 °C, 78%; (e) p-TsNHNH₂, NaOAc, THF, H₂O, 100 °C, 78%; (f) Zn, Cu(OAc)₂, HOAc, H₂O,70 °C, 81%; (g) Mbs=C(SMe)NHBoc **65**, HgCl₂, Et₃N, CH₂Cl₂, 74%; (h) HCl, MeOH, 52%; (i) AgNO₃, Et₃N, CH₃CN, 73%;

(j) CF₃CO₂H, 60 °C, 91%.